=6y^4-8y^3-2y^2

Simple and best practice solution for =6y^4-8y^3-2y^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for =6y^4-8y^3-2y^2 equation:


Simplifying
0 = 6y4 + -8y3 + -2y2

Reorder the terms:
0 = -2y2 + -8y3 + 6y4

Solving
0 = -2y2 + -8y3 + 6y4

Solving for variable 'y'.
Remove the zero:
2y2 + 8y3 + -6y4 = -2y2 + -8y3 + 6y4 + 2y2 + 8y3 + -6y4

Reorder the terms:
2y2 + 8y3 + -6y4 = -2y2 + 2y2 + -8y3 + 8y3 + 6y4 + -6y4

Combine like terms: -2y2 + 2y2 = 0
2y2 + 8y3 + -6y4 = 0 + -8y3 + 8y3 + 6y4 + -6y4
2y2 + 8y3 + -6y4 = -8y3 + 8y3 + 6y4 + -6y4

Combine like terms: -8y3 + 8y3 = 0
2y2 + 8y3 + -6y4 = 0 + 6y4 + -6y4
2y2 + 8y3 + -6y4 = 6y4 + -6y4

Combine like terms: 6y4 + -6y4 = 0
2y2 + 8y3 + -6y4 = 0

Factor out the Greatest Common Factor (GCF), '2y2'.
2y2(1 + 4y + -3y2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor 'y2' equal to zero and attempt to solve: Simplifying y2 = 0 Solving y2 = 0 Move all terms containing y to the left, all other terms to the right. Simplifying y2 = 0 Take the square root of each side: y = {0}

Subproblem 2

Set the factor '(1 + 4y + -3y2)' equal to zero and attempt to solve: Simplifying 1 + 4y + -3y2 = 0 Solving 1 + 4y + -3y2 = 0 Begin completing the square. Divide all terms by -3 the coefficient of the squared term: Divide each side by '-3'. -0.3333333333 + -1.333333333y + y2 = 0 Move the constant term to the right: Add '0.3333333333' to each side of the equation. -0.3333333333 + -1.333333333y + 0.3333333333 + y2 = 0 + 0.3333333333 Reorder the terms: -0.3333333333 + 0.3333333333 + -1.333333333y + y2 = 0 + 0.3333333333 Combine like terms: -0.3333333333 + 0.3333333333 = 0.0000000000 0.0000000000 + -1.333333333y + y2 = 0 + 0.3333333333 -1.333333333y + y2 = 0 + 0.3333333333 Combine like terms: 0 + 0.3333333333 = 0.3333333333 -1.333333333y + y2 = 0.3333333333 The y term is -1.333333333y. Take half its coefficient (-0.6666666665). Square it (0.4444444442) and add it to both sides. Add '0.4444444442' to each side of the equation. -1.333333333y + 0.4444444442 + y2 = 0.3333333333 + 0.4444444442 Reorder the terms: 0.4444444442 + -1.333333333y + y2 = 0.3333333333 + 0.4444444442 Combine like terms: 0.3333333333 + 0.4444444442 = 0.7777777775 0.4444444442 + -1.333333333y + y2 = 0.7777777775 Factor a perfect square on the left side: (y + -0.6666666665)(y + -0.6666666665) = 0.7777777775 Calculate the square root of the right side: 0.881917104 Break this problem into two subproblems by setting (y + -0.6666666665) equal to 0.881917104 and -0.881917104.

Subproblem 1

y + -0.6666666665 = 0.881917104 Simplifying y + -0.6666666665 = 0.881917104 Reorder the terms: -0.6666666665 + y = 0.881917104 Solving -0.6666666665 + y = 0.881917104 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '0.6666666665' to each side of the equation. -0.6666666665 + 0.6666666665 + y = 0.881917104 + 0.6666666665 Combine like terms: -0.6666666665 + 0.6666666665 = 0.0000000000 0.0000000000 + y = 0.881917104 + 0.6666666665 y = 0.881917104 + 0.6666666665 Combine like terms: 0.881917104 + 0.6666666665 = 1.5485837705 y = 1.5485837705 Simplifying y = 1.5485837705

Subproblem 2

y + -0.6666666665 = -0.881917104 Simplifying y + -0.6666666665 = -0.881917104 Reorder the terms: -0.6666666665 + y = -0.881917104 Solving -0.6666666665 + y = -0.881917104 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '0.6666666665' to each side of the equation. -0.6666666665 + 0.6666666665 + y = -0.881917104 + 0.6666666665 Combine like terms: -0.6666666665 + 0.6666666665 = 0.0000000000 0.0000000000 + y = -0.881917104 + 0.6666666665 y = -0.881917104 + 0.6666666665 Combine like terms: -0.881917104 + 0.6666666665 = -0.2152504375 y = -0.2152504375 Simplifying y = -0.2152504375

Solution

The solution to the problem is based on the solutions from the subproblems. y = {1.5485837705, -0.2152504375}

Solution

y = {0, 1.5485837705, -0.2152504375}

See similar equations:

| 5x+8y=56 | | 8x-22=3x-3 | | 5x+2y=31 | | 250000/325000 | | -(-9x+1)=40 | | y=-1/7*x-7 | | 3(-2x+1)=-36 | | 2+x=5+2x | | 7+3n=-29 | | -2(x-8)=42 | | 2/3x3/8 | | 6a=8+4a | | -9(x+6)=-26 | | 105-5x=4+6 | | 2x^4+11x^3-5x^2-43x+35=0 | | (6u^4w^3-4u^3y^2)/2u^4 | | 4/5+5/27=x/45 | | 5w^3+7w^2+10w+14= | | 2x^2-11xy-21y^2= | | 11x-8=-24 | | x/10+6=-19 | | 2x^2-13xy+21y^2= | | x+8/3=5 | | (3n+2)(2n-2)=0 | | 1/a-1/x=1/x-1/b | | 5u^5v^9+25u^3v^3y^8= | | -2(4x+1)-8=14 | | 30w^5x^2y^4+18w^9x^7= | | (1/2)+(1/4)+(2/3) | | 1/2+1/4+2/3 | | (8-2i)(2-5i)= | | 12+-6x+x^2= |

Equations solver categories